a2 United States Patent

Kimmel

US009251064B2

US 9,251,064 B2
*Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) NVRAM CACHING AND LOGGING IN A
STORAGE SYSTEM

(71)
(72)

Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventor: Jeffrey S. Kimmel, Chapel Hill, NC

Us)
(73)
")

Assignee: NetApp, Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/150,302

Filed: Jan. 8,2014

(65) Prior Publication Data

US 2015/0193337 Al Jul. 9, 2015

Int. Cl1.
GO6F 12/00
GO6F 12/02
GO6F 12/08
GO6F 3/06
U.S. CL
CPC

(51
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
GO6F 12/0246 (2013.01); GOGF 3/0614
(2013.01); GOGF 3/0655 (2013.01); GOG6F
3/0679 (2013.01); GOGF 3/0688 (2013.01);
GOG6F 12/0802 (2013.01); GO6F 12/0804
(2013.01); GOGF 12/0815 (2013.01); GO6F
12/0866 (2013.01); GOGF 12/0891 (2013.01);
GOG6F 12/0893 (2013.01); GO6F 12/0895
(2013.01); GO6F 2212/1032 (2013.01); GO6F
2212/214 (2013.01); GOGF 2212/22] (2013.01);
GOG6F 2212/2228 (2013.01)

(58) Field of Classification Search
CPC . GO6F 3/0679; GOGF 3/0688; GOGF 12/0893;
GOG6F 12/0895; GOG6F 12/0802; GO6F 12/0891;
GOG6F 12/0246

USPC 711/103, 143
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,937,425 A 8/1999 Ban
7,249,150 Bl 7/2007 Watanabe et al.
7,680,837 B2 3/2010 Yamato
7,996,636 Bl 8/2011 Prakash et al.
8,082,390 Bl 12/2011 Fan et al.
8,099,396 Bl 1/2012 Novick et al.
8,099,554 B1* 1/2012 Solomon et al. 711/118
8,205,065 B2 6/2012 Matze
8,341,457 B2 12/2012 Spry et al.
(Continued)
OTHER PUBLICATIONS

Cornwall, Michael, “Anatomy of a Solid-state Drive,” ACM Queue—
Networks, vol. 10, No. 10, Oct. 2012, pp. 1-7.

(Continued)

Primary Examiner — Prasith Thammavong
(74) Attorney, Agent, or Firm — Cesari and McKenna, LLP

&7

In one embodiment, a node coupled to one or more solid state
drives (SSDs) executes a storage input/output (I/O) stack
having a plurality of layers, including a persistence layer. The
node includes a non-volatile random access memory
(NVRAM). A portion of the NVRAM is configured as a
write-back cache to store write data associated with one or
more write requests. The persistence layer is configured to
organize the write data into extents that are written back to the
one or more SSDs in any order. The write data is preserved in
the write-back cache until each extent is safely and success-
fully stored on the one or more SSDs in an event of a power
loss.

ABSTRACT

18 Claims, 8 Drawing Sheets

WRITE REQUEST 4102
(AL TENGTR) (WRITE DATA 4142)
A)—=2(WRITEREQUEST 4100

WRITE REQUEST 410¢,

LUNAI?éLBA. LENGTH\{ WRITE DATA 414c’
Al%

WRITE REQUEST 4100

WRITE DATA 414d

DATA PATH

i
-
NVRAM 280 |
6102 WRITE DATA_41da:] WRITE DAIA 414b | / o R
1 | CACHE
@ ¢ = 860
>
6105 WRITE DATA_41do.
X
#10c] WRITE DATA_414d.
- —
i /
;7 \@ @ ! (:)
{ X) I
- A / ’r /
EXTENT 4708 {0 ;) 7
/
EXTENT 4 |/ /
EXTENT 470 /
EXTENT 4704

1

PR
Ba “~_-7 20

US 9,251,064 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,417,987 Bl 4/2013 Goel et al.

8,495,417 B2 7/2013 Jernigan, IV et al.

8,539,008 B2* 9/2013 Faithetal. 707/822
8,560,879 B1 10/2013 Goel

8,583,865 Bl1* 11/2013 Sadeetal. 711/113

8,595,595 Bl 11/2013 Grcanac et al.

8,806,115 B1* 82014 Pateletal. .. 711/103
2003/0105928 Al* 6/2003 Ashetal. ... 711/136
2003/0120869 Al 6/2003 Lee et al.

2003/0135729 Al 7/2003 Mason et al.

2003/0200388 Al* 10/2003 Hetrickcoooevvvinnn. 711/114
2005/0144514 Al 6/2005 Ulrich et al.

2006/0004957 Al* 1/2006 Handetal 711/113
2007/0033433 Al* 2/2007 Peconeetal. 714/6

2007/0143359 Al
2009/0083478 Al
2009/0132770 Al
2010/0042790 Al
2010/0088296 Al
2010/0205353 Al
2011/0035548 Al
2011/0191522 Al
2011/0213928 Al
2012/0239869 Al
2012/0246392 Al*
2012/0290788 Al
2013/0018854 Al
2013/0138862 Al
2013/0238832 Al
2013/0238932 Al
2013/0268497 Al
2013/0346810 Al

OTHER PUBLICATIONS

6/2007 Uppala
3/2009 Kunimatsu et al.
5/2009 Lin
2/2010 Mondal et al.
4/2010 Periyagaram et al.
8/2010 Miyamoto et al.
2/2011 Kimmel et al.
8/2011 Condict et al.
9/2011 Grube et al.
9/2012 Chiueh et al.
9/2012 Cheoncccoovvvevvevirinns 711/103
11/2012 Klemm et al.
1/2013 Condict
5/2013 Motwani et al.
9/2013 Dronamraju et al.
9/2013 Resch
10/2013 Baldwin et al.
12/2013 Kimmel et al.

“Cuckoo hashing,” Wikipedia,
Cuckoo__hash, Apr. 2013, pp. 1-5.
Culik, K., et al.,, “Dense Multiway Trees,” ACM Transactions on
Database Systems, vol. 6, Issue 3, Sep. 1981, pp. 486-512.
Debnath, Biplob, et al., “FlashStore: High Throughput Persistent
Key-Value Store,” Proceedings of the VLDB Endowment VLDB
Endowment, vol. 3, Issue 1-2, Sep. 2010, pp. 1414-1425.

Gal, Eran et al., “Algorithms and Data Structures for Flash Memo-
ries,” ACM Computing Surveys, vol. 37, No. 2, Jun. 2005, pp. 138-
163.

http://en.wikipedia.org/wiki/

Gray, Jim et al., “Flash Disk Opportunity for Server Applications,”
Queue—Enterprise Flash Storage, vol. 6, Issue 4, Jul.-Aug. 2008, pp.
18-23.

Handy, Jim, “SSSI Tech Notes: How Controllers Maximize SSD
Life,” SNIA, Jan. 2013, pp. 1-20.

Leventhal, Adam H. “A File System All Its Own,” Communications
of the ACM Queue, vol. 56, No. 5, May 2013, pp. 64-67.

Lim, H. et al., “SILT: A Memory-Efficient, High-Performance Key-
Value Store,” Proceedings of the 23™ ACM Symposium on Operating
Systems Principles (SOSP’11), Oct. 23-26, 2011, pp. 1-13.
Moshayedi, Mark, et al., “Enterprise SSDs,” ACM Queue—Enter-
prise Flash Storage, vol. 6 No. 4, Jul.-Aug. 2008, pp. 32-39.

Pagh, Rasmus, et al., “Cuckoo Hashing,” Elsevier Science, Dec. 8,
2003, pp. 1-27.

Pagh, Rasmus, “Cuckoo Hashing for Undergraduates,” IT University
of Copenhagen, Mar. 27, 2006, pp. 1-6.

Rosenblum, Mendel, et al., “The Design and Implementation of a
Log-Structured File System,” Proceedings of the 13”* ACM Sympo-
sium on Operating Systems Principles, Jul. 24, 1991, pp. 1-15.
Rosenblum, Mendel, et al., “The LFS Storage Manager,” Summer
’90 USENIX Technical Conference, Anaheim, California, Jun. 1990,
pp. 1-16.

Rosenblum, Mendel, “The Design and Implementation of a Log-
structured File System,” UC Berkeley, Thesis, 1992, pp. 1-101.
Seltzer, Margo, et al., “An Implementation of a Log Structured File
System for UNIX,” Winter USENIX, San Diego, CA, Jan. 25-29,
1993, pp. 1-18.

Seltzer, Margo, et al., “File System Performance and Transaction
Support,” UC Berkeley, Thesis, 1992, pp. 1-131.

Smith, Kent, “Garbage Collection,” SandForce, Flash Memory Sum-
mit, Santa Clara, CA, Aug. 2011, pp. 1-9.

Twigg, Andy, et al., “Stratified B-trees and Versioned Dictionaries,”
Proceedings of the 3rd USENIX Conference on Hot Topics in Stor-
age and File Systems, vol. 11, 2011, pp. 1-5.

Wu, Po-Liang, et al., “A File-System-Aware FTL Design for Flash-
Memory Storage Systems,” Design, Automation & Test in Europe
Conference & Exhibition, IEEE, 2009, pp. 1-6.

PCT Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration, International Searching Authority, International
Application No. PCT/US2014/071581, mailed Apr. 10, 2015, 9
pages.

* cited by examiner

US 9,251,064 B2

Sheet 1 of 8

Feb. 2, 2016

U.S. Patent

00!

051
AVHdY
JOVHOLS

00¢
4dON

0ch
1SOH

L Ol4

oyl

1O03aNNOJHILNI

JOVHOLS

ol
¥31SN10

L103INNOOJHAINI

05}
AVEYY
JOVHOLS

007
3JQON

0cl
LSOH

US 9,251,064 B2

Sheet 2 of 8

Feb. 2, 2016

U.S. Patent

¢ Old
05}
N
0% | . . | 0% | 0%
ass | ass
(S)3aON ass
¥3LSN10 oL vl o 8
NOY/OL ~ - S)LSOH
| — ;oE\oL —
— G8¢ _ -
052 0z SOOTAN vz — e
JOV-RALNI — 02
LOFNNOONALNI| | SZ NS 082 ool | wardvay | |[¥3Lsn0
¥3LSN10 VAN MHIOMLIN | ——
| _ | 4
|
e
LOANNOOYILNI WALSAS
vee
— TN NTLSAS
012 5oc ONILVHIdO
Ndo /
g1z MOVLS O/l
A 39VIOLS
00¢ 02C AYOW3W

U.S. Patent

Feb. 2, 2016 Sheet 3 of 8 US 9,251,064 B2
/300
B | ADMINISTRATION
) g 310
A
M
E PROTOCOL LAYER CLUSTER DATABASE
S -t > @ m
S
A ——————
G 7335
| PERSISTENCE ima)
v 1 e] J !
@ - : . : 6007
G "
K i 3457 EV \
VOLUME LAYER [* ! ! 1
E -t > 340 -t : P e o \\: \
R — : J l\\ \\
N | 3655 1N\ \
E EXTENT STORE L N | N \
L - > LAYER - ' cee kil N \\
350 i\ J P~ N \
= i N
I NVLOGS | LN
RAID LAYER \ o5 ol
- > \ = 4 \ | I
360 TN - I
NVRAM 280 | 11!
11y
370 STORAGE LAYER 1
= -t > 365 () I | I
- — | EXTENTSTORELOG 1o J/ ||
Il CHECKPOINTA'1 | (METADATA) | II
390 | ,JT_IIZCITIITCIIIIIIT .
OPERATING SYSTEM I VOLUME LAYER LOG i<_ | / }
KERNEL : (METADATA) . I
Zﬁ e o o o i ——————————————— _I }
r | o ;

FIG. 3

STORAGE ARRAY 150

U.S. Patent Feb. 2, 2016 Sheet 4 of 8
. WRITE REQUEST 410
2= |\(CLUNID,LBA, LENGTH 413) (_ WRITE DATA
" y

_ [DECODE 420]
S LUN D, OFFSET, LENGTH 422
|——>—%ﬁ
o= y i
o [VOLUME MAPPING 430] —— g y—
w ¢ | VOLUME ID, OFFSET,LENGTH [~432 | (WRITE DATA)' 470
T 1 —
222 [VOLUME ID, OFFSET, LENGTH |~434
B3 1 okl [EXTENT HASHING 474]—
B (e mm—mmmmmmmmmes [BUCKET MAPPING 476]

-

VOLUME LAYER
340

[
o

440a

DENSE TREg,) DENSE TREE

4443

DENSE TREE

OFFSET RANGE OFFSET RANGE
440n

I o v

i s I

DENSE TREE

EXTENT STORE INSTANCE
AN v

e i o e o e B

[EXTENT METADATA SELECTION 480 J<—'""

-

US 9,251,064 B2

[

OFFSET, LENGTH

EXTENT KEY 475

g

ENTRY
446

\.

VOLUME METADATA

Y

HASH VALUE 472

[HASH TABLE INDEX 484]<—J

LOCATION 490, KEY 475

350

LAYER

EXTENT STORE

360

=S
AY
4—\‘——-——|

t-1 EXTENTKEY 475 r4-

\

EXTENT 470

o e o e o et e s it B B

[DEDUPLICATION 452]
[COMPRESSION 454]

RAID LAYER

|

([FULL STRIPE
| WRITE 462

FIG. 4

)

U.S. Patent Feb. 2, 2016 Sheet 5 of 8 US 9,251,064 B2

_ READ REQUEST 510
SEA 500
2= \(" LUNID,LBA LENGTH 513) »
‘ ¥
- [DECODE 420] READ RESPONSE 514
5%%{ LUN ID, OFFSET, LENGTH C READ DATA 512)
o 7
o [VOLUME MAPPING 430] 522
¢+ [_VOLUME D, OFFSET, LENGTH 532 | riqent 2701 | achE
hog ! — 580
55| | VOLUME ID, OFFSET, LENGTH |»534
4)
e — $~<; _________ VOLUME METADATA ENTRY
T v 3 446
! DENSE TREE |
| OPESErRAGGE OFFSETRANGE || |QEESELLENGTH
e | 4403 - EXTENT KEY 475
m | o 440n !
= | | e i\
| 1
wIe ! d ?
L3 DENSE TREE\ !
S | 1/ DENSE TREE/ = a PAGE CACHE
2 |1 ! 448
: ‘ | —
! VOLUME 445 ! Y
_______________________________ g EXTENT KEY 475
[BUCKET MAPPING 476 J«——I | (HASHVALUE 472)
EXTENT STORE INSTANCE EXTENT METADATA
478~] SELECTION 480
w i i meiniety \
g%q {7 LOCATION 430, KEY 485 <—';‘|:HASH TABLE INDEX 484 J+—
e I = e i [
= | [J-] HASHTABLE 482a i EXTENT 470 |
\] LA S
t| |HASHTABLE 4820 |(MEMORY)
] J [DECOMPRESSION 456]
e T SEGMENT
1
= S £ Y EXTENT 470 { ip[EXTENT
O ~ / |_ READ 468
o I R N e e R
= !]SSDMT [ssozsob[; .. |SSD@|
R —— 1466 FIG. 5

U.S. Patent Feb.

2,2016 Sheet 6 of 8

WRITE REQUEST 410a

H3a

/TOND, LBA, LENGTH\ (WRITE DATA 4_1_@]

e

WRITE REQUEST 410b

=1 /TUN J{%)EIBBA, LENGTH ™ (WRITE DATA m}]
B }———{ WRITEREQUEST 410c

\

\
\
\

US 9,251,064 B2

LUNTD, LEA, LENGTH) (WRITE DATA %)]
C }—=2(" WRITE REQUEST 410d

LUN D, [BA, LENGTH™) (WRITE DATA 414d)
(o)

\ DATA PATH /
NVRAM 280 I |
‘- e WRITE
610a~| WRITE DATA 41da\ | WRITE DATA 414b |7« < « L pacK
. ’ 7 / CACHE
. @ ! @ | 630~ 600
6100 WRITE DATA 414c
! ; , o
610cA WRITE DATA 414d |
'I 7 T // '] I i /I
i 1
7 e 0@
II /// ,"\I ,I / ///
YI V4 /// \ Ill Il ///
EXTENT 470a ' [/
!
EXTENT 470b ;!
EXTENT 470c y
" 7| EXTENT 470d
\ /
\ /
N ’_,
260a >~ -~ 260n
\ - P
2 5[)

FIG.

U.S. Patent Feb. 2, 2016 Sheet 7 of 8 US 9,251,064 B2

v —

'NVLOGS 285 }

' |

L |

| (o6 w0 |

' |

‘ |

i waGic 72| | 1 - -
|

i VERSION 764 | SIZE 72
|

| |AHEAD 788 | | SEQUENCE 773

b | NUMBER

A 158 VOLUMEID 774 (432)

i \

o OFFSET 175 (432)

| 1| | ENTRY 170 LENGTH 776 (432)

|

N : WRITECACHE 777

B | POINTER

! -]

| | CHECKSUM 778

l \ . I

a | :

| \ ! :

1 Y ENTRY 770 ,

| |

' |

' i

oo o W o R S S ot Ve D e meen e ks M A

FIG. 7

U.S. Patent Feb. 2, 2016 Sheet 8 of 8 US 9,251,064 B2

PROTOCOL WRITE REQUEST 410
LAYER INSTANCE | ('TUNTD, LBA, LENGTH 413) (\WRITE DATA 414)

e —
=
e - T

VERDRA b~ DATAPATH | BACK
PATR L~ PERSISTENCE | CAGHE

LAYER INSTANCE ‘ o
331 ‘ — L
OELETE | WRITE DATA 414 U

!
:

| neee vl WRTEDATA 414 | « o
| :

| CACHEENTRY . \\

!
I
!

/I

i
R/, 2 X

OFFSETLENGTH 432 / < : ,

~
—
~

! 1
STENTREY as]l (ENENT 40§

)

| I

HASH VALUE 472

VOLUME LAYER
INSTANCE
Ut

i
."
," [EXTENT [0G @) | ;
!
|
i
i

1

EXTENT
STORE LAYER!
INSTANCE |
351a

KEY, LOCATION

KEY, LOCATION

[VOLUME [0G %5_]

| /

EXTENT STORE

|

!
|
!

LAYER INSTANCE
-~ 351 P
o~ RAID LAYER -~ 860
INSTANCE
RAID LAYER 361a
INSTANCE
361b | |
l . . |]
260a b 260n 260a ﬁ<~ ;T)T 260n

ARRAY ARRAY
[160b ng] FIG. 8 [150a ng]

US 9,251,064 B2

1
NVRAM CACHING AND LOGGING IN A
STORAGE SYSTEM

BACKGROUND

1. Technical Field

The present disclosure relates to storage systems and, more
specifically, to caching and logging of data, including meta-
data, in non-volatile random access memory (NVRAM) of a
storage system.

2. Background Information

A storage system typically includes one or more storage
devices, such as solid state drives (SSDs) embodied as flash
storage devices, into which information may be entered, and
from which the information may be obtained, as desired. The
storage system may logically organize the information stored
on the devices as storage containers, such as files or logical
units (LUNSs). Each storage container may be implemented as
a set of data structures, such as data blocks that store data for
the storage containers and metadata blocks that describe the
data of the storage containers. For example, the metadata may
describe, e.g., identify, storage locations on the devices for the
data.

Some types of SSDs, especially those with NAND flash
components, move data among those components at the
granularity of a page, e.g., 8 KB. In contrast, the size and
alignment of writes from a storage system to SSDs may need
to be more flexible in order to maximize capacity and media
wear efficiency, for example to accommodate misaligned
write accesses, to allow for data compression to arbitrary
sizes, or to incorporate a small amount of storage system
metadata contiguous with the data. Additionally, deferred
processing of write requests may be advantageous in order to
improve performance and wear efficiency, e.g., batching
writes to improve Redundant Array of Independent Disk
(RAID) efficiency, or evaluating opportunities for data de-
duplication. Thus, fast and efficient acknowledgement of the
1/0 requests by the storage system prior to writing data to
SSDs is desirable so as to reduce latency from the perspective
of a host.

However, data associated with an I/O request may be lost
when power is interrupted on the storage system. This is
particularly problematic when the I/O request, e.g., a write
request, from the host has been acknowledged by the storage
system and write data associated with the request has been
sent to the one or more storage devices prior to a power loss,
i.e., the storage device has buffered the data but power is
interrupted prior to permanent storage on the device. Enter-
prise grade SSDs may include a feature that permits some or
all of the buffered data to be stored to its flash storage device
components even when power fails, e.g., by providing inter-
nal capacitors or batteries. But lower cost consumer grade
SSDs have no such feature, so that data may be lost when
power fails. Thus, there is a need to provide low latency for
1/0 requests to a storage system using low cost storage while
avoiding data loss.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments
herein may be better understood by referring to the following
description in conjunction with the accompanying drawings
in which like reference numerals indicate identically or func-
tionally similar elements, of which:

FIG. 1 is a block diagram of a plurality of nodes intercon-
nected as a cluster;

FIG. 2 is a block diagram of a node;

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 3 is a block diagram of a storage input/output (I/O)
stack of the node;

FIG. 4 illustrates a write path of the storage 1/O stack;

FIG. 5 illustrates a read path of the storage /O stack;

FIG. 6 is a block diagram of a persistent write-back cache
of' the storage 1/O stack;

FIG. 7 is a block diagram of a non-volatile random access
memory (NVRAM) log of the storage 1/O stack; and

FIG. 8 illustrates data and metadata paths ofthe storage I/O
stack.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The embodiments described herein provide non-volatile
random access memory (NVRAM) caching and logging con-
figured to deliver low latency acknowledgements of input/
output (I/O) requests, such as write requests, while avoiding
loss of data associated with the requests that may occur as a
result of power failures. Write data associated with one or
more write requests may be received at a storage system,
which is illustratively embodied as a node of a cluster. The
write data may be stored in a portion of an NVRAM config-
ured as, e.g., a persistent write-back cache of the node, while
parameters of the request may be stored in another portion of
the NVRAM configured as a log, e.g., a NVLog. The write
data may be organized into separate variable length blocks or
extents and “written back” out-of-order from the write-back
cache to storage devices, such as solid state drives (SSDs).
Tlustratively, the storage devices may be consumer grade
SSDs serviced by other nodes in the cluster. The write data
may be preserved in the persistent write-back cache until each
extent is safely and successtully stored on SSD (i.e., in the
event of power loss), or operations associated with the write
request are sufficiently logged on NVLog, to thereby provide
efficient recovery when attempting to restore the write data
preserved in the cache to the SSDs.

DESCRIPTION

Storage Cluster

FIG. 1 is a block diagram of a plurality of nodes 200
interconnected as a cluster 100 and configured to provide
storage service relating to the organization of information on
storage devices. The nodes 200 may be interconnected by a
cluster interconnect fabric 110 and include functional com-
ponents that cooperate to provide a distributed storage archi-
tecture of the cluster 100, which may be deployed in a storage
area network (SAN). As described herein, the components of
each node 200 include hardware and software functionality
that enable the node to connect to one or more hosts 120 over
a computer network 130, as well as to one or more storage
arrays 150 of storage devices over a storage interconnect 140,
to thereby render the storage service in accordance with the
distributed storage architecture.

Each host 120 may be embodied as a general-purpose
computer configured to interact with any node 200 in accor-
dance with a client/server model of information delivery. That
is, the client (host) may request the services of the node, and
the node may return the results of the services requested by
the host, by exchanging packets over the network 130. The
host may issue packets including file-based access protocols,
such as the Network File System (NFS) protocol over the
Transmission Control Protocol/Internet Protocol (TCP/IP),
when accessing information on the node in the form of stor-
age containers such as files and directories. However, in an
embodiment, the host 120 illustratively issues packets includ-

US 9,251,064 B2

3

ing block-based access protocols, such as the Small Com-
puter Systems Interface (SCSI) protocol encapsulated over
TCP (iSCSI) and SCSI encapsulated over FC (FCP), when
accessing information in the form of storage containers such
as logical units (LUNs). Notably, any of the nodes 200 may
service a request directed to a storage container stored on the
cluster 100.

FIG. 2 is a block diagram of a node 200 that is illustratively
embodied as a storage system having one or more central
processing units (CPUs) 210 coupled to a memory 220 via a
memory bus 215. The CPU 210 is also coupled to a network
adapter 230, storage controllers 240, a cluster interconnect
interface 250 and a non-volatile random access memory
(NVRAM 280) via a system interconnect 270. The network
adapter 230 may include one or more ports adapted to couple
the node 200 to the host(s) 120 over computer network 130,
which may include point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a local area network. The network adapter 230
thus includes the mechanical, electrical and signaling cir-
cuitry needed to connect the node to the network 130, which
illustratively embodies an Ethernet or Fibre Channel (FC)
network.

The memory 220 may include memory locations that are
addressable by the CPU 210 for storing software programs
and data structures associated with the embodiments
described herein. The CPU 210 may;, in turn, include process-
ing elements and/or logic circuitry configured to execute the
software programs, such as a storage input/output (I/O) stack
300, and manipulate the data structures. [llustratively, the
storage 1/O stack 300 may be implemented as a set of user
mode processes that may be decomposed into a plurality of
threads. An operating system kernel 224, portions of which
are typically resident in memory 220 (in-core) and executed
by the processing elements (i.e., CPU 210), functionally
organizes the node by, inter alia, invoking operations in sup-
port of the storage service implemented by the node and, in
particular, the storage 1/O stack 300. A suitable operating
system kernel 224 may include a general-purpose operating
system, such as the UNIX® series or Microsoft Windows®
series of operating systems, or an operating system with
configurable functionality such as microkernels and embed-
ded kernels. However, in an embodiment described herein,
the operating system kernel is illustratively the Linux® oper-
ating system. It will be apparent to those skilled in the art that
other processing and memory means, including various com-
puter readable media, may be used to store and execute pro-
gram instructions pertaining to the embodiments herein.

Each storage controller 240 cooperates with the storage [/O
stack 300 executing on the node 200 to access information
requested by the host 120. The information is preferably
stored on storage devices such as solid state drives (SSDs)
260, illustratively embodied as flash storage devices, of stor-
age array 150. In an embodiment, the flash storage devices
may be based on NAND flash components, e.g., single-layer-
cell (SLC) flash, multi-layer-cell (MLC) flash or triple-layer-
cell (TLC) flash, although it will be understood to those
skilled in the art that other non-volatile, solid-state electronic
devices (e.g., drives based on storage class memory compo-
nents) may be advantageously used with the embodiments
described herein. Accordingly, the storage devices may or
may not be block-oriented (i.e., accessed as blocks). The
storage controller 240 includes one or more ports having /0
interface circuitry that couples to the SSDs 260 over the
storage interconnect 140, illustratively embodied as a serial
attached SCSI (SAS) topology. Alternatively, other point-to-
point /O interconnect arrangements, such as a conventional

10

15

20

25

30

35

40

45

50

55

60

65

4

serial ATA (SATA) topology or a PCI topology, may be used.
The system interconnect 270 may also couple the node 200 to
alocal service storage device 248, such as an SSD configured
to locally store cluster-related configuration information,
e.g., as cluster database (DB) 244, which may be replicated to
other nodes 200 in the cluster 100.

The cluster interconnect interface 250 may include one or
more ports adapted to couple the node 200 to the other node(s)
of'the cluster 100. In an embodiment, Ethernet may be used as
the clustering protocol and interconnect fabric media,
although it will be apparent to those skilled in the art that other
types of protocols and interconnects, such as Infiniband, may
be utilized within the embodiments described herein. The
NVRAM 280 may include a back-up battery or other built-in
last-state retention capability (e.g., non-volatile semiconduc-
tor memory such as storage class memory) that is capable of
maintaining data in light of a failure to the node and cluster
environment. [llustratively, a portion of the NVRAM 280
may be configured as one or more non-volatile logs (NVLogs
285) configured to temporarily record (“log”) I/O requests,
such as write requests, received from the host 120.

Storage /O Stack

FIG. 3 is a block diagram of the storage I/O stack 300 that
may be advantageously used with one or more embodiments
described herein. The storage 1/O stack 300 includes a plu-
rality of software modules or layers that cooperate with other
functional components of the nodes 200 to provide the dis-
tributed storage architecture of the cluster 100. In an embodi-
ment, the distributed storage architecture presents an abstrac-
tion of a single storage container, i.e., all of the storage arrays
150 of the nodes 200 for the entire cluster 100 organized as
one large pool of storage. In other words, the architecture
consolidates storage, i.e., the SSDs 260 of the arrays 150,
throughout the cluster (retrievable via cluster-wide keys) to
enable storage of the LUNs. Both storage capacity and per-
formance may then be subsequently scaled by adding nodes
200 to the cluster 100.

Iustratively, the storage I/O stack 300 includes an admin-
istration layer 310, a protocol layer 320, a persistence layer
330, a volume layer 340, an extent store layer 350, a Redun-
dant Array of Independent Disks (RAID) layer 360, a storage
layer 365 and a NVRAM (storing NVLogs) “layer” intercon-
nected with a messaging kernel 370. The messaging kernel
370 may provide a message-based (or event-based) schedul-
ing model (e.g., asynchronous scheduling) that employs mes-
sages as fundamental units of work exchanged (i.e., passed)
among the layers. Suitable message-passing mechanisms
provided by the messaging kernel to transfer information
between the layers of the storage 1/O stack 300 may include,
e.g., for intra-node communication: i) messages that execute
on a pool of threads, ii) messages that execute on a single
thread progressing as an operation through the storage 1/O
stack, iii) messages using an Inter Process Communication
(IPC) mechanism, and e.g., for inter-node communication:
messages using a Remote Procedure Call (RPC) mechanism
in accordance with a function shipping implementation.
Alternatively, the storage 1/0O stack 300 may be implemented
using a thread-based or stack-based execution model without
messages. [n one or more embodiments, the messaging kernel
370 allocates processing resources from the operating system
kernel 224 to execute the messages. Each storage /O stack
layer may be implemented as one or more instances (i.e.,
processes) executing one or more threads (e.g., in kernel or
user space) that process the messages passed between the
layers such that the messages provide synchronization for
blocking and non-blocking operation of the layers.

US 9,251,064 B2

5

In an embodiment, the protocol layer 320 may communi-
cate with the host 120 over the network 130 by exchanging
discrete frames or packets configured as 1/O requests accord-
ing to pre-defined protocols, such as iSCSI and FCP. An /O
request, e.g., a read or write request, may be directed toa LUN
and may include I/O parameters such as, inter alia, a LUN
identifier (ID), a logical block address (LBA) of the LUN, a
length (i.e., amount of data) and, in the case of a write request,
write data. The protocol layer 320 receives the /O request and
forwards it to the persistence layer 330, which records the
request into a persistent write-back cache 600, illustratively
embodied as a log whose contents can be replaced randomly,
e.g., under some random access replacement policy rather
than only in serial fashion, and returns an acknowledgement
to the host 120 via the protocol layer 320. In one or more
embodiments, only I/O requests that modify the LUN, e.g.,
write requests, are logged. Notably, the /O request may be
logged at the node receiving the /O request, or in an alterna-
tive embodiment in accordance with the function shipping
implementation, the I/O request may be logged at another
node.

Tlustratively, dedicated logs may be maintained by the
various layers of the storage 1/O stack 300. For example, a
dedicated log 335 may be maintained by the persistence layer
330 to record the I/O parameters of an 1/O request as equiva-
lent internal, i.e., storage 1/O stack, parameters, e.g., volume
1D, offset, and length. In the case of a write request, the
persistence layer 330 may also cooperate with the NVRAM
280 to implement the write-back cache 600 configured to
store the write data associated with the write request. In an
embodiment, the write-back cache may be structured as a log.
Notably, the write data for the write request may be physically
stored in the cache 600 such that the log 335 contains the
reference to the associated write data. It will be understood to
persons skilled in the art that other variations of data struc-
tures may be used to store or maintain the write data in
NVRAM including data structures with no logs. In an
embodiment, a copy of the write-back cache may also be
maintained in the memory 220 to facilitate direct memory
access to the storage controllers. In other embodiments, cach-
ing may be performed at the host 120 or at a receiving node in
accordance with a protocol that maintains coherency between
the write data stored at the cache and the cluster.

In an embodiment, the administration layer 310 may
apportion the LUN into multiple volumes, each of which may
be partitioned into multiple regions (e.g., allotted as disjoint
block address ranges), with each region having one or more
segments stored as multiple stripes on the array 150. A plu-
rality of volumes distributed among the nodes 200 may thus
service a single LUN, i.e., each volume within the LUN
services a different LBA range (i.e., offset and length, here-
inafter offset range) or set of ranges within the LUN. The
protocol layer 320 may implement a volume mapping tech-
nique to identify a volume to which the I/O request is directed
(i.e., the volume servicing the offset range indicated by the
parameters of the /O request). [llustratively, the cluster data-
base 244 may be configured to maintain one or more associa-
tions (e.g., key-value pairs) for each of the multiple volumes,
e.g., an association between the LUN ID and a volume, as
well as an association between the volume and a node ID for
a node managing the volume. The administration layer 310
may also cooperate with the database 244 to create (or delete)
one or more volumes associated with the LUN (e.g., creating
avolume ID/LUN key-value pair in the database 244). Using
the LUN ID and LBA (or LBA range), the volume mapping
technique may provide a volume ID (e.g., using appropriate
associations in the cluster database 244) that identifies the

10

15

20

25

30

35

40

45

50

55

60

65

6

volume and node servicing the volume destined for the
request, as well as translate the LBA (or LBA range) into an
offset and length within the volume. Specifically, the volume
1D is used to determine a volume layer instance that manages
volume metadata associated with the LBA or LBA range. As
noted, the protocol layer 320 may pass the I/O request (i.e.,
volume ID, offset and length) to the persistence layer 330,
which may use the function shipping (e.g., inter-node) imple-
mentation to forward the 1/O request to the appropriate vol-
ume layer instance executing on a node in the cluster based on
the volume ID.

In an embodiment, the volume layer 340 may manage the
volume metadata by, e.g., maintaining states of host-visible
containers, such as ranges of LUNs, and performing data
management functions, such as creation of snapshots and
clones, for the LUNSs in cooperation with the administration
layer 310. The volume metadata is illustratively embodied as
in-core mappings from LUN addresses (i.e., LBAs) to
durable extent keys, which are unique cluster-wide 1Ds asso-
ciated with SSD storage locations for extents within an extent
key space of the cluster-wide storage container. That is, an
extent key may be used to retrieve the data of the extent at an
SSD storage location associated with the extent key. Alterna-
tively, there may be multiple storage containers in the cluster
wherein each container has its own extent key space, e.g.,
where the administration layer 310 provides distribution of
extents among the storage containers. [llustratively, an extent
is a variable length block of data that provides aunit of storage
on the SSDs that need not be aligned on any specific bound-
ary, i.e., it may be byte aligned. Accordingly, an extent may be
an aggregation of write data from a plurality of write requests
to maintain such alignment. [llustratively, the volume layer
340 may record the forwarded request (e.g., information or
parameters characterizing the request), as well as changes to
the volume metadata, in dedicated log 345 maintained by the
volume layer. Subsequently, the contents of the volume layer
log 345 may be written to the storage array 150 in accordance
with retirement of log entries, while a checkpoint (e.g., syn-
chronization) operation that stores in-core metadata on the
array 150. That is, the checkpoint operation (checkpoint)
ensures that a consistent state of metadata, as processed in-
core, is committed to (i.e., stored on) the storage array 150;
whereas the retirement of log entries ensures that the entries
accumulated in the volume layer log 345 synchronize with the
metadata checkpoints committed to the storage array 150 by,
e.g., retiring those accumulated log entries that are prior to the
checkpoint. In one or more embodiments, the checkpoint and
retirement of log entries may be data driven, periodic or both.

In an embodiment, the extent store layer 350 is responsible
for storing extents on the SSDs 260 (i.e., on the storage array
150) and for providing the extent keys to the volume layer 340
(e.g., in response to a forwarded write request). The extent
store layer 350 is also responsible for retrieving data (e.g., an
existing extent) using an extent key (e.g., in response to a
forwarded read request). The extent store layer 350 may be
responsible for performing de-duplication and compression
on the extents prior to storage. The extent store layer 350 may
maintain in-core mappings (e.g., embodied as hash tables) of
extent keys to SSD storage locations (e.g., offset on an SSD
260 of array 150). The extent store layer 350 may also main-
tain a dedicated log 355 of entries that accumulate requested
“put” and “delete” operations (i.e., write requests and delete
requests for extents issued from other layers to the extent
store layer 350), where these operations change the in-core
mappings (i.e., hash table entries). Subsequently, the in-core
mappings and contents of the extent store layer log 355 may
be written to the storage array 150 in accordance with a

US 9,251,064 B2

7

“fuzzy” checkpoint 390 (i.e., checkpoints with incremental
changes recorded in one or more log files) in which selected
in-core mappings, less than the total, are committed to the
array 150 at various intervals (e.g., driven by an amount of
change to the in-core mappings, size thresholds oflog 355, or
periodically). Notably, the accumulated entries in log 355
may be retired once all in-core mappings have been commit-
ted to include the changes recorded in those entries.

In an embodiment, the RAID layer 360 may organize the
SSDs 260 within the storage array 150 as one or more RAID
groups (e.g., sets of SSDs) that enhance the reliability and
integrity of extent storage on the array by writing data
“stripes” having redundant information, i.e., appropriate par-
ity information with respect to the striped data, across a given
number of SSDs 260 of each RAID group. The RAID layer
360 may also store a number of stripes (e.g., stripes of suffi-
cient depth), e.g., in accordance with a plurality of contiguous
range write operations, so as to reduce data relocation (i.e.,
internal flash block management) that may occur within the
SSDs as a result of the operations. In an embodiment, the
storage layer 365 implements storage /O drivers that may
communicate directly with hardware (e.g., the storage con-
trollers 240 and cluster interface 250) cooperating with the
operating system kernel 224, such as a Linux virtual function
1/0 (VFIO) driver.

Write Path

FIG. 4 illustrates an I/O (e.g., write) path 400 of the storage
1/0 stack 300 for processing an /O request, e.g., a SCSI write
request 410. The write request 410 may be issued by host 120
and directed to a LUN stored on the storage array 150 of the
cluster 100. Ilustratively, the protocol layer 320 receives and
processes the write request by decoding 420 (e.g., parsing and
extracting) fields of the request, e.g., LUN ID, LBA and
length (shown at 413), as well as write data 414. The protocol
layer 320 may use the results 422 from decoding 420 for a
volume mapping technique 430 (described above) that trans-
lates the LUN ID and LBA range (i.e., equivalent offset and
length) of the write request to an appropriate volume layer
instance, i.e., volume ID (volume 445), in the cluster 100 that
is responsible for managing volume metadata for the LBA
range. In an alternative embodiment, the persistence layer
330 may implement the above-described volume mapping
technique 430. The protocol layer then passes the results 432,
e.g., volume ID, offset, length (as well as write data), to the
persistence layer 330, which records the request in the per-
sistence layer log 335 and returns an acknowledgement to the
host 120 via the protocol layer 320. The persistence layer 330
may aggregate and organize write data 414 from one or more
write requests into a new extent 470 and perform a hash
computation, i.e., a hash function, on the new extent to gen-
erate a hash value 472 in accordance with an extent hashing
technique 474.

The persistence layer 330 may then pass the write request
with aggregated write data including, e.g., the volume 1D,
offset and length, as parameters 434 to the appropriate vol-
ume layer instance. In an embodiment, message passing of
the parameters 432 (received by the persistence layer) may be
redirected to another node via the function shipping mecha-
nism, e.g., RPC, for inter-node communication. Alterna-
tively, message passing of the parameters 432 may be via the
IPC mechanism, e.g., message threads, for intra-node com-
munication.

In one or more embodiments, a bucket mapping technique
476 is provided that translates the hash value 472 to an
instance of an appropriate extent store layer (e.g., extent store
instance 478) that is responsible for storing the new extent
470. Note, the bucket mapping technique may be imple-

25

40

45

50

8

mented in any layer of the storage 1/O stack 300 above the
extent store layer 350. In an embodiment, for example, the
bucket mapping technique may be implemented in the per-
sistence layer 330, the volume layer 340, or a layer that
manages cluster-wide information, such as a cluster layer (not
shown). The persistence layer 330 may then pass the hash
value 472 and the new extent 470 to the appropriate volume
layer instance and onto the appropriate extent store instance
via an extent store put operation. The extent hashing tech-
nique 474 may embody an approximately uniform hash func-
tion to ensure that any random extent to be written may have
an approximately equal chance of falling into any extent store
instance 478, i.e., hash buckets are distributed across extent
store instances of the cluster 100 based on available
resources. As a result, the bucket mapping technique 476
provides load-balancing of write operations (and, by symme-
try, read operations) across nodes 200 of the cluster, while
also leveling flash wear in the SSDs 260 of the cluster.

In response to the put operation, the extent store instance
may process the hash value 472 to perform an extent metadata
selection technique 480 that (i) selects an appropriate hash
table 482 (e.g., hash table 4824) from a set of hash tables
(illustratively in-core) within the extent store instance 478,
and (ii) extracts a hash table index 484 from the hash value
472 to index into the selected hash table and lookup a table
entry having an extent key 475 identifying a storage location
490 on SSD 260 for the extent. Accordingly, the extent store
layer 350 may contain computer executable instructions
executed by the CPU 210 to perform operations that imple-
ment the metadata selection technique 480 described herein.
If atable entry with a matching key is found, the SSD location
490 mapped from the extent key 475 is used to retrieve an
existing extent (not shown) from SSD. The existing extent is
then compared with the new extent 470 to determine whether
their data is identical. If the data is identical, the new extent
470 is already stored on SSD 260 and a de-duplication oppor-
tunity (denoted de-duplication 452) exists such that there is
no need to write another copy of the data. Accordingly, a
reference count (not shown) in the table entry for the existing
extent is incremented and the extent key 475 of the existing
extent is passed to the appropriate volume layer instance for
storage within an entry (denoted as volume metadata entry
446) of a dense tree metadata structure (e.g., dense tree 444a),
such that the extent key 475 is associated an offset range (e.g.,
offset range 4404) of the volume 445.

However, if the data of the existing extent is not identical to
the data of the new extent 470, a collision occurs and a
deterministic algorithm is invoked to sequentially generate as
many new candidate extent keys (not shown) mapping to the
same bucket as needed to either provide de-duplication 452 or
produce an extent key that is not already stored within the
extent store instance. Notably, another hash table (e.g. hash
table 482#) of extent store instance 478 may be selected by a
new candidate extent key in accordance with the extent meta-
data selection technique 480. In the event that no de-duplica-
tion opportunity exists (i.e., the extent is not already stored)
the new extent 470 is compressed in accordance with com-
pression technique 454 and passed to the RAID layer 360,
which processes the new extent 470 for storage on SSD 260
within one or more stripes 464 of RAID group 466. The extent
store instance may cooperate with the RAID layer 360 to
identify a storage segment 460 (i.e., a portion of the storage
array 150) and a location on SSD 260 within the segment 460
in which to store the new extent 470. Illustratively, the iden-
tified storage segment is a segment with a large contiguous
free space having, e.g., location 490 on SSD 2605 for storing
the extent 470.

US 9,251,064 B2

9

In an embodiment, the RAID layer 360 then writes the
stripes 464 across the RAID group 466, illustratively as a full
write stripe 462. The RAID layer 360 may write a series of
stripes 464 of sufficient depth to reduce data relocation that
may occur within flash-based SSDs 260 (i.e., flash block
management). The extent store instance then (i) loads the
SSDlocation 490 of the new extent 470 into the selected hash
table 482x (i.e., as selected by the new candidate extent key),
(i1) passes a new extent key (denoted as extent key 475) to the
appropriate volume layer instance for storage within an entry
(also denoted as volume metadata entry 446) of a dense tree
444 managed by that volume layer instance, and (iii) records
a change to metadata of the selected hash table in the extent
store layer log 355. Illustratively, the volume layer instance
selects dense tree 444a spanning an offset range 440a of the
volume 445 that encompasses the offset range of the write
request. As noted, the volume 445 (e.g., an offset space of the
volume) is partitioned into multiple regions (e.g., allotted as
disjoint offset ranges); in an embodiment, each region is
represented by a dense tree 444. The volume layer instance
then inserts the volume metadata entry 446 into the dense tree
444aq and records a change corresponding to the volume meta-
data entry in the volume layer log 345. Accordingly, the [/O
(write) request is sufficiently stored on SSD 260 of the cluster.

Read Path

FIG. 5 illustrates an I/O (e.g., read) path 500 of the storage
1/0 stack 300 for processing an /O request, e.g., a SCSI read
request 510. The read request 510 may be issued by host 120
and received at the protocol layer 320 of a node 200 in the
cluster 100. Illustratively, the protocol layer 320 processes the
read request by decoding 420 (e.g., parsing and extracting)
fields of therequest, e.g., LUN ID, LBA, and length (shown at
513), and uses the results 522, e.g., LUN ID, offset, and
length, for the volume mapping technique. That is, the pro-
tocol layer 320 may implement the volume mapping tech-
nique 430 (described above) to translate the LUN ID and LBA
range (i.e., equivalent offset and length) of the read request to
an appropriate volume layer instance, i.e., volume ID (vol-
ume 445), in the cluster 100 that is responsible for managing
volume metadata for the LBA (i.e., offset) range. The proto-
col layer then passes the results 532 to the persistence layer
330, which may search the write-back cache 600 to determine
whether some or all of the read request can be serviced from
its cached data. If the entire request cannot be serviced from
the cached data, the persistence layer 330 may then pass the
remaining portion of the request including, e.g., the volume
1D, offset and length, as parameters 534 to the appropriate
volume layer instance in accordance with the function ship-
ping mechanism (e.g., RPC, for inter-node communication)
or the IPC mechanism (e.g., message threads, for intra-node
communication).

The volume layer instance may process the read request to
access a dense tree metadata structure (e.g., dense tree 444a)
associated with a region (e.g., offset range 440a) of a volume
445 that encompasses the requested offset range (specified by
parameters 534). The volume layer instance may further pro-
cess the read request to search for (lookup) one or more
volume metadata entries 446 of the dense tree 444a to obtain
one or more extent keys 475 associated with one or more
extents 470 within the requested offset range. Illustratively,
each dense tree 444 may be embodied as a-multiple levels of
a search structure with possibly overlapping offset range
entries at each level. The entries, i.e., volume metadata entries
446, provide mappings from host-accessible LUN addresses,
i.e., LBAs (offsets), to durable extent keys. The various levels
of the dense tree may have volume metadata entries 446 for
the same offset, in which case the higher level has the newer

25

40

45

10

entry and is used to service the read request. A top level of the
dense tree 444 is illustratively resident in-core and a page
cache 448 may be used to access lower levels of the tree. If the
requested range or portion thereof is not present in the top
level, a metadata page associated with an index entry at the
next lower tree level is accessed. The metadata page (i.e., in
the page cache 448) at the next level is then searched (e.g., a
binary search) to find any overlapping entries. This process is
then iterated until one or more volume metadata entries 446 of
a level are found to ensure that the extent key(s) 475 for the
entire requested read range are found. If no metadata entries
exist for the entire or portions of the requested read range,
then the missing portion(s) are zero filled. Once found, each
extent key 475 is processed by the volume layer 340 to, e.g.,
implement the bucket mapping technique 476 that translates
the extent key to an appropriate extent store instance 478
responsible for storing the requested extent 470. Note that, in
an embodiment, each extent key 475 may be substantially
identical to the hash value 472 associated with the extent 470,
i.e., the hash value as calculated during the write request for
the extent, such that the bucket mapping 476 and extent
metadata selection 480 techniques may be used for both write
and read path operations. Note also that the extent key 475
may be derived from the hash value 472. The volume layer
340 may then pass the extent key 475 (i.e., the hash value from
a previous write request for the extent) to the appropriate
extent store instance 478 (via an extent store get operation),
which performs an extent key-to-SSD mapping to determine
the location on SSD 260 for the extent.

In response to the get operation, the extent store instance
may process the extent key 475 (i.e., the hash value 472) to
perform the extent metadata selection technique 480 that (i)
selects an appropriate hash table (e.g., hash table 4824) from
a set of hash tables within the extent store instance 478, and
(ii) extracts a hash table index 484 from the extent key 475
(i.e., the hash value 472) to index into the selected hash table
and lookup a table entry having a matching extent key 475
that identifies a storage location 490 on SSD 260 for the
extent 470. That is, the SSD location 490 mapped to the extent
key 475 may be used to retrieve the existing extent (denoted
as extent 470) from SSD 260 (e.g., SSD 2606). The extent
store instance then cooperates with the RAID layer 360 to
access the extent on SSD 2605 and retrieve the data contents
in accordance with the read request. Illustratively, the RAID
layer 360 may read the extent in accordance with an extent
read operation 468 and pass the extent 470 to the extent store
instance. The extent store instance may then decompress the
extent 470 in accordance with a decompression technique
456, although it will be understood to those skilled in the art
that decompression can be performed at any layer of the
storage /O stack 300. The extent 470 may be stored in a
buffer (not shown) in memory 220 and a reference to that
buffer may be passed back through the layers of the storage
1/0 stack. The persistence layer may then load the extent into
a read cache 580 (or other staging mechanism) and may
extract appropriate read data 512 from the read cache 580 for
the L.BA range of the read request 510. Thereafter, the proto-
col layer 320 may create a SCSI read response 514, including
the read data 512, and return the read response to the host 120.

Persistent Write-Back Cache

A write request 410 (including write data 414) received at
the persistence layer 330 is illustratively stored in the
NVRAM 280. Storage of write request 410 (i.e., write param-
eters 413 and write data 414) in the NVRAM 280 enables
immediate, i.e., low latency, acknowledgement to the host
120 of successful receipt and storage of the write data on the
cluster 100. The write request 410 may be stored in NVRAM

US 9,251,064 B2

11

in the form of a log, e.g., dedicated log 335 of NVLogs 285;
however, in an embodiment, the write data is illustratively
stored in the NVRAM in the form of the persistent write-back
cache 600. The write data 414 is thereafter preserved in the
cache 600 until written to the storage array 150 (i.e., SSD 260)
according to a “write-back” operation (as opposed to a check-
point).

Tlustratively, the write-back cache 600 is configured to
write the data back to SSD quickly, primarily because there is
no need to achieve read caching or cache hits on subsequent
write requests. However, write-back of the write data from the
cache 600 to the SSD 260 may occur due to cache pressure or
to capture a point-in-time image of a storage container. Nev-
ertheless, a reason for maintaining the write data in the per-
sistent write-back cache 600 for some period of time is that
the write data may be part of sequential write requests that are
contiguous, i.e., within a continuous LBA range, and thus
may be combined into one or more variable length extents
470. The extents (i.e., write data) can then be “written back”
to the storage array 150 in any order that is convenient.
Preserving such flexibility enables use of the persistent write-
back cache 600 to impose a degree of regularity on an incom-
ing stream of write requests 410 received at the storage /O
stack 300. It should be noted that any protocol ordering in the
incoming stream may be reflected in the contents of the write-
back cache. As a result, out-of-order write back from the
write-back cache to SSD is permitted, so long as data in the
cache is faithfully preserved.

FIG. 6 is ablock diagram of the persistent write-back cache
600 of the storage I/O stack 300 that may be advantageously
used with one or more embodiments described herein. The
write-back cache 600 illustratively includes a plurality of
entries, i.e., cache lines 610a-c, configured to store write data
414a-d of write requests 410a-d. For example, assume the
write requests are associated with an incoming stream of
odd-sized, sequential write requests 410a-d that manifest as
two 512 byte write requests (e.g., write data 414a, 4145 of
write requests 410a, 4105), followed by a 16 KB write request
(e.g., write data 414¢ of write request 410¢) and a 256 KB
write request (e.g., write data 4144 of write request 4104).
The persistent write-back cache 600 may store the write data
in cache lines 610a-c prior to collecting and organizing the
data into more regularly aligned, e.g., on 16 KB boundaries,
extents 470a-d of write data that are thereafter written to SSD
260. Nlustratively, an extent 470a may be formed by combin-
ing the write data, e.g., 414a and 4145, from write requests
410q and 4105, whereas an extent 4705 may be formed from
the write data 414¢ of write request 410¢. Additionally, the
write data 414d from write request 4104 may be split into two
or more extents 470¢ and 4704, e.g., based on a maximum
extent size 630. The extents 470a-4 may then be written back
to the storage array 150 in any convenient order. Notably, the
extents (write data) are not retired, e.g., evicted or deleted,
from the cache 600 until the write data is safely stored on the
array. Accordingly, a property of the persistent write-back
cache 600 of the storage 1/O stack 300 is that write data is
generally not retired from the cache until the persistence layer
330 receives confirmation (e.g., from the extent store layer
350) that the write data (extent) is successfully stored on SSD
260 of the storage array.

Advantageously, use of the persistent write-back cache 600
within the storage I/O stack 300 enables flexibility of how the
data is written back to SSD 260, as opposed to a log which
typically compels write-back in approximately the same
order in which the write requests were received. For example,
if the write data 414a-d were stored in the persistence layer
log 335, the persistence layer 330 may be compelled to

10

15

20

25

30

35

40

45

50

55

60

65

12

“write-back”, i.e., push or copy, the write data to the volume
layer 340 in approximately the same order in which the write
requests were received to allow reuse of the log space. This is
because log space is typically allocated, filled, checkpointed
and freed sequentially, whereas lines within the persistent
write-back cache 600 may be allocated, filled, written-back,
and freed in any pattern (i.e., order) convenient to the storage
system.

Atomicity of Data

In one or more embodiments, the persistence layer 330
may cooperate with the NVRAM 280 to provide atomicity for
write data, e.g., write data 414qa-d, that could be fragmented
into multiple extents and stored across different boundaries of
logical constituents of a LUN, e.g., volumes, regions, and/or
stripes. If the write data could cross one of the logical bound-
aries, it may be desirable to provide atomicity for that data
without having synchronization among instances of the vol-
ume layer 340 and instances of other layers (e.g., the extent
store layer 350) representing those different constituents. For
example, each extent storage operation may follow a write
path (i.e., its extent store layer “put” operation and associated
volume layer offset range operation) that is independent from
the path followed by other layer operations. The persistence
layer 330 may provide such an atomic function, i.e., as
viewed by the host 120, by hiding those boundaries and
enabling atomicity in spite of the fact that there is no coordi-
nation among the different constituents of the LUN, e.g.,
instances of lower layers of the storage [/O stack 300.

More generally, if write data 414 could be fragmented at
lower layers of the storage 1/O stack (e.g., RAID layer 360,
extent store layer 350 or volume layer 340) and it is desirable
to preserve atomicity for some portion (i.e., atomic units) of
the data, the NVRAM 280 facilitates such preservation, e.g.,
via write-back cache 600 of the persistence layer by allowing
the atomic units to commit into NVRAM rather than having
to implement a type of two-phase commit of lower-level
portions of the data that constitute the atomic units. That is,
persistent caching and logging (e.g., via NVRAM 280 and
NVLogs 285) of operations at the persistence layer obviates
synchronization of lower-level operations, allowing simplifi-
cation and a greater degree of parallelism among instances of
lower layers of the storage 1/O stack 300.

For example, assume a write request 410 that changes a
databaseblock ofa LUN arrives at the node 200 at an arbitrary
alignment with respect to, e.g., a database requirement for
write atomicity. In typical deployments, the database block
may be sized between 4 KB and 64 KB but, in general, is
power of 2 in size (any arbitrary 512 byte alignment boundary
may be chosen). Assume further that write data 414 of the
write request forms one or more 64 KB extents, each of which
is to be processed atomically. If, for example, 192 KB of write
data is received at the node, the write data could include three
64 KB blocks or a series of 4 KB blocks. Regardless of its
size, if the write data includes uniform-sized database blocks
of'a power of 2 size no greater than 64 KB, and if atomicity is
maintained for each 64 KB portion of the write data, it can be
ensured that every database block within the write data is also
written atomically, i.e., all or nothing, within a subunit (64 KB
portion) of the write data. That is, if the write data is multiple
megabytes in length, the atomic guarantee only extends to
each “64 KB-aligned-modulo-at-the-beginning-of-the-write-
data” portion of data. Accordingly, the alignment requirement
commences from the beginning of the write request and not
from the beginning the LUN. By atomically writing 64 KB
portions into the NVRAM 280 maintained by the persistence
layer 330, e.g., into the persistent write-back cache 600, frag-
ments of those portions can be written back to the underlying

US 9,251,064 B2

13

volumes at different times without any coordinated atomic
push-back among the volumes (i.e., because the portions are
individually preserved in the persistent write-back cache). As
long as the portions are atomically stored when recorded by
the persistence layer 330, the atomicity requirement can be
achieved.

NVRAM Logging

In addition to providing atomicity of write data, the persis-
tence layer 330 may cooperate with the NVRAM 280 to hide
latencies associated with underlying operations (e.g., data
and metadata path operations) within the storage 1/O stack
300. To that end, the persistence layer 330 may cooperate
with the NVRAM to employ a log for recording an I/O
request 410 issued by the host 120. FIG. 7 is a block diagram
ofan NVRAM log 700 that may be advantageously used with
one or more embodiments described herein. [llustratively, the
NVRAM log 700 may be a dedicated log of the NVLogs 285
and, thus, provides an exemplary embodiment of the persis-
tence layer log 335, the volume layer log 345 and/or the extent
storage layer log 355. In an embodiment, the dedicated
NVRAM log 700 is illustratively configured as a circular log
of records or entries 770 and includes a magic number 762
that ensures the correctness (validity) of the log, a version 764
that identifies a version of the log, a head (pointer) 766 con-
figured to point to (reference) a head entry at a beginning of
the circularlog and a tail (pointer) 768 configured to reference
a tail entry at an end of the circular log.

Each entry 770 may further include, inter alia, atype 771 of
1/0O request (e.g. write request), a size 772 of the entry and a
sequence number 773. Illustratively, the sequence number
773 (e.g., a monotonically increasing value) facilitates
matching of entries within the log 700 to allow retirement of
the entries when all write data associated with the request is
safely stored on the storage array 150. Thus, the sequence
number 773 may be a time-stamp or other value that is advan-
tageously employed when the write data is split into multiple
extents 470 and written to the storage array out-of-order. For
example, a log entry 770 may be retired when all extents
associated with the write data 414 of the write request 410
have been successfully stored on SSD 260 of the array 150.
The entry 770 may also include a volume ID 774 that identi-
fies a volume destined for the request (and a node servicing
the volume), as well as 1/O request parameters 432 such as
offset 775 (i.e., LBA) and length 776 (i.e., write data length).
In the case of the persistence layer log 335, a write cache
pointer 777 is provided to reference the write data 414 stored
in the write-back cache 600. Alternatively, the log 700 may
contain the write data, such that the log subsumes the write-
back cache 600. A checksum 778 may also be provided to
ensure that the information of the entry is stored without error.

In one or more embodiments, the volume layer 340 and
extent store layer 350 may employ the NVRAM 280 to opti-
mize both (i) latency of metadata changes (updates), as well
as (ii) write amplification costs associated with the metadata
updates. That is, the extent store layer 350 may use its dedi-
cated log 355 of the NVLogs 285 to record metadata updates
to hash table 482, whereas the volume layer 350 may use its
dedicated log 345 of the NVLogs 285 to record volume meta-
data updates to the dense tree 444 (via volume metadata entry
446).

Specifically, the volume layer 340 may record write
requests (i.e., parameters 432, such as offset and length, along
with extent key 475) on the dense tree 444. The recorded
metadata may be checkpointed by a merge operation from the
in-core dense tree metadata structure to a corresponding
dense tree metadata structure on SSD (on-flash). Updates to
the in-core dense tree 444 may also be logged onto the dedi-

10

15

20

25

30

35

40

45

50

55

60

65

14

cated log 345 of NVLogs 285 and then pushed (written) to
SSD as the log fills. Writing of the log entries to SSD 260 may
be effected by a change log operation, i.e., copying operation,
that records insertions and deletions performed on the in-core
dense tree 444. Such log writing may be separate and different
from a merge operation between the in-core mappings and
on-flash mappings of the dense tree, which is a checkpoint.
Accordingly, once the merge (checkpoint) of the in-core
dense tree 444 is performed, the entries of the dedicated log
345 may be retired (e.g., deleted, marked reusable, or a
marker written to the log expiring previous entries) because
they have been merged onto SSD 260.

Similarly, the extent store layer 350 records updates to the
in-core hash tables 482 in the dedicated log 355. Subse-
quently, those in-core mappings, i.e., hash tables, may be
written to the storage array 150 in accordance with the fuzzy
checkpoint 390 in which selected in-core mappings, less than
the total, are committed to the array 150 at various intervals
(e.g., driven by an amount of change to the in-core mappings,
size thresholds oflog 355, or periodically). Notably, the accu-
mulated entries in log 355 may be retired once all in-core
mappings have been committed and then, illustratively, for
those entries prior to the first interval.

Accordingly, a metadata path through the storage /0 stack
300 involves storage of metadata in entries 770 of the dedi-
cated logs, as well as checkpoints of in-core mappings, i.e.,
entries of hash tables 482 of the extent store layer 350 and
entries of dense trees 444 of the volume layer 340. In addition,
a data path through the storage 1/0 stack 300 involves storage
of write data in the persistence write-back cache 600, where
the write data is organized as one or more extents 470 and
provided, e.g., via a memory reference such as a pointer or
data message, to the extent store layer 350 and to the RAID
layer 360, where each extent 470 is safely stored on SSD 260.

Power Loss Resilient Paths

FIG. 8 illustrates data and metadata paths 800 of the stor-
age 1/O stack 300. In an embodiment, write data 414 of write
request 410 is stored in the persistent write-back cache 600 by
apersistence layer instance 331. The write data is then formed
into an extent 470 (and a hash value 472) and passed to an
extent store layer instance 351a for storage on the array 150.
As described previously, the extent store instance processes
the hash value 472 to index into a hash table 482 to either
determine an existing table entry (e.g., a possible de-duplica-
tion opportunity) or a free entry. [llustratively, if no de-dupli-
cation opportunity exists (or the hash value indexes to a free
entry), the extent 470 (i.e., write data 414) is passed toa RAID
layer instance 361a within a full stripe write 462, and the
RAID layer instance subsequently reports completion of the
write, e.g., via return parameters or callback 860, to the extent
store layer instance 351a (i.e., extent store instance). The
extent store instance may then load the extent location into a
field of an entry of the hash table 482 (LOCATION 490) and
record the table entry in the dedicated extent log 355.

Subsequently, the extent store layer instance 351a may
issue a callback 862 to the persistence layer instance 331,
which may use the callback to “complete”, e.g. delete, evictor
mark removable, the write data 414 from the persistent write-
back cache 600. At that point, the write data 414 of extent 470
has been provided to the SSD 260 of the storage array 150a
and has been acknowledged either as stored on flash compo-
nents of the SSD 260 or stored in a non-volatile buffer within
the SSD.

Alternatively, the persistent layer instance 331 may wait
until an appropriate volume layer instance 341 has inserted
(committed) the extent key 475 and write parameters 432
(e.g., offset and length) into the dense tree 444 and recorded

US 9,251,064 B2

15

that volume metadata in the dedicated volume layer log 345.
Notably, the volume metadata is not written into the volume
layer 340 that resolves the extent 470 for holding the write
data until the extent is actually at the SSD 260. That is, the
volume layer instance 341 may not store any useful metadata
until it is provided the extent key 475 for the extent 470, and
the extent store layer instance 351 does not provide the vol-
ume layer instance with the extent key 475 until it has
resolved a potential de-duplication opportunity. Once the
extent key 475 and write parameters 432 are committed into
the dense tree 444, the volume layer instance 341 may issue a
callback 864 to the persistence layer instance 331 informing
that instance that the write request 410 is “complete.”

In an embodiment, the dedicated logs 345 and 355 may be
stored on a different storage array 1505 via a different extent
storage layer instance 3515 from that used to store the write
data 414 of extent 470, i.e., storage array 150q via extent store
instance 351a. In other words, the path for (write) data may
differ from the path for metadata. Nevertheless, even if appro-
priate log entries in the dedicated logs 345 and 355 are not
immediately stored on the flash components of the SSD 260
(or power is lost) the log entries are preserved in NVRAM
280, e.g., in NVlogs 285. Similarly, the write data 414 of the
extent 470 is preserved in NVRAM 280, e.g., in persistent
write-back cache 600. Thus, the preserved write data and
metadata may be replayed to recover failure of either storage
array 150a or 1505 (e.g. power loss to the SSD 260) to enable
successful storage of the write data (and/or metadata) to the
flash components of their respective SSDs. Correspondingly,
there is no particular motive to quickly write the extent 470
(write data 414) from the persistent write-back cache 600 to
SSD, provided there is sufficient storage capacity in the write-
back cache 600 to accommodate the write data awaiting stor-
ageon SSD. As aresult, disjoint operations between instances
of layers of the storage I/O stack 300 may be performed in
parallel.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the
components and/or elements described herein can be imple-
mented as software encoded on a tangible (non-transitory)
computer-readable medium (e.g., disks and/or CDs) having
program instructions executing on a computer, hardware,
firmware, or a combination thereof. Accordingly this descrip-
tion is to be taken only by way of example and not to other-
wise limit the scope of the embodiments herein. Therefore, it
is the object of the appended claims to cover all such varia-
tions and modifications as come within the true spirit and
scope of the embodiments herein.

What is claimed is:

1. A system comprising:

a central processing unit (CPU) of a node coupled to one or
more solid state drives (SSDs);

a memory coupled to the CPU and configured to store a
storage input/output (I/O) stack having a plurality of
layers executable by the CPU, the layers including a
persistence layer; and

anon-volatile random access memory (NVRAM) coupled
to the CPU, a portion of the NVRAM configured as a
write-back cache to store write data associated with one
or more write requests, the persistence layer configured
to organize the write data into extents that are written
back to the one or more SSDs in any order, the write data

25

40

45

55

60

16

preserved in the write-back cache until each extent is
safely and successfully stored on the one or more SSDs
in an event of a power loss.
2. The system of claim 1 wherein the persistence layer is
further configured to provide persistent caching of operations
for the NVRAM.
3. The system of claim 2 wherein the one or more write
requests are sequential write requests, and wherein the per-
sistence layer maintains the write data of the sequential write
requests in the write-back cache for a period of time to com-
bine the write data into one or more of the extents.
4. The system of claim 2 wherein the any order comprises
out-of-order write back from the write-back cache to the one
or more SSDs as long as the write data is preserved in the
write-back cache.
5. The system of claim 2 wherein the persistence layer is
further configured to cooperate with the NVRAM to provide
atomicity for write data capable of fragmentation at one or
more layers of the storage 1/O stack.
6. The system of claim 2 wherein the persistent caching of
operations at the persistence layer obviates synchronization
of lower-level operations to allow parallelism among one or
more layers of the storage 1/O stack.
7. A method comprising:
executing, by a node coupled to one or more solid state
drives (SSDs), a storage input/output (I/O) stack having
a plurality of layers;

storing, in a non-volatile random access memory
(NVRAM) configured as a write-back cache, write data
associated with one or more write requests;
organizing, by the node, the write data into extents; and
writing, by the node, the extents back to the one or more
SSDs in any order,

wherein the write data is preserved in the write-back cache
until each extent is safely and successfully stored on the
one or more SSDs in an event of a power loss.

8. The method of claim 7 further comprising providing
persistent caching of operations for the NVRAM.

9. The method of claim 8 wherein the one or more write
requests are sequential write requests, and the method further
comprises:

maintaining the write data of the sequential write requests

in the write-back cache for a period of time to combine
the write data into one or more of the extents.

10. The method of claim 8 wherein the any order comprises
out-of-order write back from the write-back cache to the one
or more SSDs as long as the write data is preserved in the
write-back cache.

11. The method of claim 8 further comprising:

providing atomicity for write data capable of fragmenta-

tion at one or more layers of the storage /O stack.

12. The method of claim 8 wherein the persistent caching
of operations obviates synchronization of lower-level opera-
tions to allow parallelism among one or more layers of the
storage 1/O stack.

13. A non-transitory computer readable medium including
program instructions for execution on one or more proces-
sors, the program instructions when executed operable to:

implement a storage input/output (I/O) stack having a plu-

rality of layers that operate with one or more solid state
drives (SSDs);

store, in a non-volatile random access memory (NVRAM)

configured as a write-back cache, write data associated
with one or more write requests;

organize the write data into extents; and

write the extents back to the one or more SSDs in any order,

US 9,251,064 B2

17

wherein the write data is preserved in the write-back cache
until each extent is safely and successfully stored on the
one or more SSDs in an event of a power loss.

14. The non-transitory computer readable medium of claim
13 wherein the program instructions when executed are fur-
ther operable to provide persistent caching of operations for
the NVRAM.

15. The non-transitory computer readable medium of claim
14 wherein the one or more write requests are sequential write
requests, and the program instructions when executed are
further operable to maintain the write data of the sequential
write requests in the write-back cache for a period of time to
combine the write data into one or more of the extents.

16. The non-transitory computer readable medium of claim
14 wherein the any order comprises out-of-order write back
from the write-back cache to the one or more SSDs as long as
the write data is preserved in the write-back cache.

17. The non-transitory computer readable medium of claim
14 wherein the program instructions when executed are fur-
ther operable to provide atomicity for write data capable of
fragmentation at one or more layers of the storage 1/O stack.

18. The non-transitory computer readable medium of claim
14 wherein the persistent caching of operations obviates syn-
chronization of lower-level operations to allow parallelism
among one or more layers of the storage 1/O stack.

#* #* #* #* #*

20

25

18

